

All INDIA RPS OLYMPIAD – 2022

M.M. 70

GRADE - IX

Time: 70 minutes

Class -9th

English (10) Horatius said, "Death comes sooner or later." (Change into indirect speech) 1. (a) Horatius said that death came sooner or later. (b) Horatius wished that death comes sooner or later. (c) Horatius said that death comes sooner or later. (d) Horatius told that death came sooner or later. 2. There is no love lost between them means (a) They love each other. (b) They are not on good terms. (c) They relation is very cordial. (d) None of these. 3. It is a must to write this letter. (Change into passive voice) (a) It is a must to be written this letter. (b) It is a must be to write this letter. (c) It is to be written this letter. (d) It is a must for this letter to be written. All <u>that glitters</u> is not gold. (The underlined clause is) 4. (a) Noun clause (b) Principal clause (c) Adjective clause (d) Adverb clause 5. We discussed the issue at a meeting all misconceptions could be clarified. (Fill the gap by choosing the correct option) (a) so (b) if (c) while (d) in order that This year farmers to get more returns. (Fill the gap by choosing the correct option) 6. (a) should (b) ought (c) used (d) must 7. He dares the challenge. (Fill the gap by choosing correct option) (b) accepted (c) to accept (a) accept (d) accepting 8. A car runs petrol. (b) of (c) from (d) by (a) on 9. Find a correct sentence. (a) We have been knowing each other for five years. (b) He is not understanding it. (c) I have worked in this college since ten years. (d) The judge is hearing the case. 10. country must work for peace. (a) Each (b) Every (d) All (c) Any

All I	NDIA RPS OLYMPIA	AD – 2022			GRADE - IX	
		Math	ematics (20)			
11.	Which of the following is equal to x^2 ?					
	(a) $x^{\frac{12}{7}} - x^{\frac{5}{7}}$	(b) $\sqrt[12]{(x^4)^{\frac{1}{3}}}$	(c)(⁻	$\sqrt{x^3}$	(d) $x^{\frac{2}{4}} \times x^{\frac{6}{4}}$	
12.	Value of (256) ^{0.16}	$\times (256)^{0.09}$ is				
	(a) 4	(b) 8	(c) 6	54	(d) 256	
13.	If y^{97} + 97 is divide	ed by $y + 1$, then remains	ainder is			
	(a) 0	(b) 1	(c) 9	95	(d) 96	
14.	$If 81y^2 - k = (9y - 1)^2 + ($	$+\frac{1}{2}\left(9y-\frac{1}{2}\right)$, then va	lue of $\frac{1}{k}$ is			
	(a) 0	(b) -4	(c) 4	ł	(d) 2	
15.	If $\sqrt{3}$ =1.732 , then	$\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}$ is equal to				
	(a) 2.732	(b) 0.2679	(c) ().732	(d) 0.517	
16.	$If\frac{a}{b} + \frac{b}{a} = -1 (a, b)$	\neq 0), the value of a^3 -	$-b^3$ is			
	(a) 1	(b) -1	(c) ()	(d) $\frac{1}{2}$	
17.	Which is the examp	ole of geometrical Line	e?			
	(a) Blackboard		(b) Sheet of Paper			
	(c) Meeting place o	f two walls	(d) Tip of sharp pe	encil		
18.	If a Linear equation	has Solutions (-3, 3)	, (0, 0) and (3, -3), th	ien it is of the fo	orm	
	(a) $y - x = 0$		(b) $x + y = 0$			
	(c) -2x + y = 0		(d) -x + 2y = 0			
19.	The Diagonals of th	e rectangle ABCD inte	ersect at 0. If ∠COD=	=78°, then ∠OAl	B is	
	(a) 35°	(b) 51°	(c) 70°	(d) 110°		
20.	In \triangle PQR, if \angle R > \angle 0	-				
	(a) $QR > PR$	(b) $PQ > PR$	(c) $PQ < PR$	(d) QR < PR		
21.	In the given figure f	-	0			
	(a) 20°	(b) 15°	100°			
	(c) 12°	(d) 10°	P O	R		
22.	The sides of a triangle are in the ratio of 3 : 5 : 7 and its perimeter is 300 cm its area will be.					
	(a) $1000\sqrt{3}$ sq. cm	(b) 1500√3sq. cm	(c) 1700√3sq. cm	(d) $1200\sqrt{3}$	sq. cm	

Page 3

All II	All INDIA RPS OLYMPIAD – 2022 — GRADE - IX								
23.	. The curved surface area of Circular cylinder of height 14 cm is 88 cm ² . The diameter of the base								
	is								
	(a) 2 cm	(b) 3 cm	(c) 4 cm	(d) 6 cm					
24.	Which of the fol	lowing is not a measu	re of central tendency.						
	(a) Standard de	viation (b) Mean	(c) Median	(d) Mode					
25.	If $x = 3 - 2\sqrt{2}$,	then value of $x^4 - \frac{1}{x^4}$ i	S						
	(a) $216\sqrt{2}$	(b) $-818\sqrt{2}$	(c) $-484\sqrt{2}$	(d) $-816\sqrt{2}$					
26.	The quadrilater	al formed by joining n	nid-points of the consec	cutive sides of a square is					
	(a) Rhombus	(b) Square	(c) Rectangle	(d) Parallelogram					
27.	If the diameter o	of a sphere increases l	by 20% then its radius i	increase by:					
	(a) 5%	(b) 10%	(c) 20%	(d) 40%					
28.	If each side of a	triangle is doubled, th	en the percentage incr	ease in the area of triangle.					
	(a) 30%	(b) 100%	(c) 300%	(d) 400%					
29.	The perimeter o	of an isosceles triangle	e is 32 cm. The ratio of c	one of the two equal sides to its base					
	is 3 : 2. Find are	a of the triangle.							
	(a) 48 cm ²	(b) $28\sqrt{3}$ cm ²	(c) $32\sqrt{2}$ cm ²	(d) 44 cm ²					
30.	If one angle of a	triangle is equal to su	ım of other two angles,	then the triangle is					
	(a) An obtuse angled triangle (b) A right angled triangle								
	(c) An isosceles triangle (d) An equilateral triangle								
		Soc	ial Science (10)						
31.	When was Napo	oleon Bonaparte defea	ited at Waterloo?						
	(a) 1820	(b) 1815	(c) 1810	(d) 1805					
32.	What was Dawe	es Plan?							
	(a) A Nazi plan	to suppress the Jews							
	(b) Stalin's plan	of collectivization							
	(c) American pl	an to take out German	ny from the financial cri	sis					
	(d) American pl	an to control the Bols	hevik						
33.	Who were 'Kulk	as' in Soviet Union?							
	(a) poor peasan	ts (b) Church fathe	ers (c) socialist revolu	utionaries (d) well-to-do peasants					
34.	How many pern	nanent members are t	here in the United Nati	ons Security Council?					
	(a) 5	(b) 10	(c) 15	(d) 20					
35.	Identify the terr	n that is used for the r	now elections after the	death of an elected representative?					
	(a) General Election (b) By Election (c) Mid – term Election (d) Re- election								
	Page 4								
-									

All I	NDIA RPS OLYMPIAD – 2	022			GRADE - IX			
36.	In which state is lying 'Mahe' a part of Puducherry, Union Territory?							
	(a) Tamilnadu	(b) Andhra	Pradesh	(c) Kerala	(d) Karnataka			
37.	Name the Himalayas that	is lying betwee	en rivers Kal	i and Teesta?				
	(a) Assam Himalayas		(b) Punja	b Himalayas				
	(c) Nepal Himalayas		(d) Kuma	un Himalayas				
38.	October heat is due to –							
	(a) Very low temperature		(b) wides	pread rain				
	(c) Low pressure over An	daman Sea	(d) high temperature and humid conditions					
39.	Which Corp is grown in R	abi season?						
	(a) Jute	(b) Cotton		(c) Wheat	(d) Rice			
40.	Under social exclusion							
	(a) criminals are not acce	(a) criminals are not accepted by the society						
	(b) groups are excluded from facilities of society							
	(c) groups are termed as	untouchables						

(d) individuals are given a sense of security

Aptitude (Reasoning) (10)

Directions (41) : In each of the following questions, a number series is given with one term missing. Choose the correct alternative that will continue the same pattern and replace the question mark in the given series.

41. The sequence 10000, 121, 100, 31, 24, –, 20 represent a number *x* with respect different bases.The missing number in this sequence is

(a) 16	(b) 21	(c) 10	(d) 22

42. ab – d – aaba – na – badna – b

(a) badna (b) andaa (c) dbanb (d) bbda

Directions (43): Study the following information carefully and answer the questions given below it :

Digit	7	3	5	0	2	1	6	4	9	8
Code	N	Н	L	Т	F	D	R	Q	G	Р

Following conditions are to be observed:

(i) If the first digit is even and the last digit is odd, they are to be coded as \$ and @ respectively

(ii) If the first digit is odd the last digit is even, they are to be coded as # and £ respectively.

(ii) If 0 is preceded as well as followed by an odd digit, then 0 is to be coded as \uparrow

(iv) If 0 is preceded as well as followed by an even digit, then 0 is to be coded as \downarrow

(v) 0 is not considered as either even or odd.

Page 5

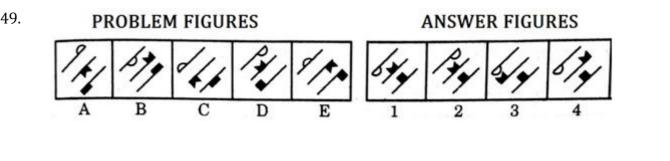
All INDIA RPS OLYMPIAD – 2022

GRADE - IX

43. What will be the code for 36250098? (a) \$RFLTTG£ (b) #RFLTTG@ (c)#RFLTTG£ (d) \$\$RFLTTG@ In a certain code LETHARGY is written as ZHSBMFUI. How is MANGROVE written in that code? 44. (a) SPWFHOWN (b) FUPSNBOH (c) SPWFNBOH (d) FWPSNBOH 45. A direction pole was situated on the crossing. Due to an accident the pole turned in such a manner that the pointer which was showing East, started showing South. One traveler went to the wrong direction thinking it to be west. In what direction actually he was travelling? (a) North (b) South (c) East (d) West Looking at a portrait of a man, Harendra said, "His mother is the wife of my father's son. Brothers 46. and sisters I have none. "At whose portrait was Harendra looking? (a) His nephew (b) His cousin (c) His uncle (d) His son **Directions (47) :** Study the information below and answer questions based on it. A leading socialite decided to organise a dinner and invited a few of her friends. Only the host and the hostess were sitting at the opposite ends of a rectangular table, with three persons along each side. The prerequisite for the seating arrangement was that each person must be seated such that at least on one side it has a person of opposite sex. Maqbool is opposite Shobha, who is not the hostess. Ratan has a woman on his right and is sitting opposite a woman. Monisha is sitting to the hostess's right, next to Dhirubhai. One person is seated between Madhuri and Urmila who is not the hostess. The men were Maqbool, Ratan, Dhirubhai and Jackie, while the women were Madhuri, Urmila, Shobha and Monisha 47. The eighth person present, Jackie, must be L the host II. seated to Shoba's right III. seated opposite Urmila (c) I and II only (a) I only (b) III only (d) II and III only

Direction (48) : In each of the following questions, there is a certain relationship between two given numbers one on side of : : and one number is given another side of : : while another number on is to be found from the given alternatives, having the same relationship with this number as the numbers of the given pair bear. Choose the best alternative.

(c) 205

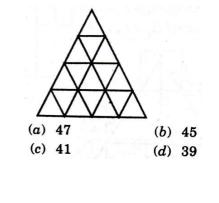

11:101::91:? 48.

(a) 225

(b) 810

Direction (49) : Find the next figure in the given series.

(d) 901


Page 6

All INDIA RPS OLYMPIAD – 2022

50.

GRADE - IX

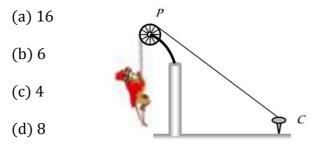
Direction (50) : Count the number parallelogram.

Science (20)

Physics (7)

51. From an elevated point *P*, a stone is projected vertically upwards. When the stone reaches a distance *h* below *P*, its velocity is double of its velocity at a height *h* above *P*. The greatest height attained by the stone from the point of projection *P* is:

(a)
$$\frac{3}{5}h$$
 (b) $\frac{5}{3}h$ (c) $\frac{7}{5}h$ (d) $\frac{5}{7}h$


- 52. A uniform chain of length 2m is kept on a table such that a length of 60cm hangs freely from the edge of the table. The total mass of the chain is 4kg. What is the work done in pulling the entire chain on the table
 - (a) 7.2 J (b) 3.6 J (c) 120 J (d) 1200 J
- A satellite is revolving in a circular orbit at a height *h*'from the earth's surface (radius of earth R; h<<R). The minimum increase in its orbital velocity required, so that the satellite could escape from the earth's gravitational field, is close to (Neglect the effect of atmosphere)

(a)
$$\sqrt{gR}$$
 (b) $\sqrt{gR/2}$ (c) $\sqrt{gR}(\sqrt{2}-1)$ (d) $\sqrt{2gR}$

54. A body floats in water with 40% of its volume outside water. When the same body floats in oil,60% of its volume remains outside oil. The relative density of the oil is

(a) 0.9 (b) 1.2 (c) 1.8 (d) 1.5

55. One end of a massless rope, which passes over a massless and frictionless pulley *P* is tied to a hook *C* while the other end is free. Maximum tension that the rope can bear is 360 N, with what value of minimum safe acceleration (in ms⁻²) can a monkey of 60 kg move down on the rope

Page 7

All INDIA RPS OLYMPIAD – 2022 — GRADE - IX									
56.	same building if tw	vo stones are thrown	(one upwards and ot	fter <i>t</i> seconds on earth. From the ther downwards) with the same onds respectively, then					
	(a) $t = t_1 - t_2$	(b) $t = \frac{t_1 + t_2}{2}$	(c) $t = \sqrt{t_1}$	$\overline{t_2}$ (d) $t = t_1^2 t_2^2$					
57.	A bullet moving wi			two planks of equal thickness. Then					
	the number of such	n planks penetrated b	y the same bullet wh	en the speed is doubled will be					
	(a) 4	(b) 8	(c) 6	(d) 10					
		Che	emistry (7)						
58.	The number of atom	ms in 0.1 mole of a tri	atomic gas is :						
	(a) 6.026×10^{22}	(b) 1.806×10^{23}	(c) 3.6×10^{23}	(d) 1.8×10^{22}					
59.	If 1.5 moles of oxyg	gen combine with Al t	o form Al ₂ O ₃ . The ma	ass of Al in grams. (Atoms mass of					
	Al = 27) used in th	e reaction is :							
	(a) 2.7	(b) 54	(c) 40.5	(d) 81					
60.	Which of the follow	ving reactions is not c	orrect according to t	the law of conservation of mass?					
	(a) $2 Mg(s) + O_2(g$	$(s) \rightarrow 2 \text{ MgO}(s)$	(b) $P_4(s) + 50_2(g)$	$) \rightarrow P_4 O_{10}(s)$					
	(c) $C_3H_8(g) + O_2(g)$	$) \rightarrow CO_2 + H_2O(g)$	(d) $CH_4(g) + 2O_2(g)$	$(g) \rightarrow CO_2(g) + 2 H_2O(g)$					
61.	What is the wavele	ength of light. Given ei	$hergy = 3.03 \times 10^{-19}$	J, h = 6.6×10^{-34} JS, c = 3.0×10^{8}					
	m/s ?								
	(a) 6.54 nm	(b) 654 nm	(c) 0.654 nm						
62.		ntum numbers are po	ssible for how many	orbitals ?					
	n = 3, l = 2, m = +								
	(a) 1	(b) 2	(c) 3	(d) 4					
63.				llected. If the temperature is					
		ume will oxygen occu							
	(a) 621 mL	(b) 569 mL	(c) 449 mL	(d) 365 mL					
64.		ving has electrovalent	-						
	(a) CaCl ₂	(b) AlCl ₃	(c) SiCl ₄	(d) PCl_5					
	Biology (6)								
65.	Which of the follow	ving statements is cor	rect?						
	(a) Prokaryotic cel	ls have a well defined	nucleus						
	(b) Eukaryotic cell	s have no mitochondi	ria						
	(c) Prokaryotic cel	ls having mitochondr	ia						
	(d) Eukaryotic cell	s having membrane b	ound organelles						
	Page 8								

All I	All INDIA RPS OLYMPIAD – 2022 GRADE - IX						
66.	In which of the following subphases of meiosis crossing over takes place?						
	(a) Leptotene	(b) Pachytene	(c) Zygotene	(d) Diplotene			
67.	DPT vaccine is used to immunise infants against						
	(a) diphtheria, who	oping cough and teta	anus				
	(b) cholera and typ	hoid					
	(c) influenza						
	(d) pneumonia						
68.	68. A common characteristic of all vertebrates is (without exception)						
	(a) presence of well developed skull						
	(b) division of body	v into head, neck, trui	nk and tail				
	(c) presence of two	pairs of functional a	ppendages				
	(d) body is covered	with an exoskeleton					
69.	Organic matter pres	sent in soil is called					
	(a) fertiliser	(b) humus	(c) living matter	(d) non-living matter			
70.	Heterosis is						
	(a) hybrid storility	(b) hybrid vigour	(c) hybrid incomp	atibility (d) bybrid in viability			

(a) hybrid sterility (b) hybrid vigour (c) hybrid incompatibility (d) hybrid in viability