

QUESTION PAPER (PHASE - I)

ENGLISH (10)

Q1. Choose the cor	rect meaning of	the given idiom:		
'Bad blood' me	ans			
(A) A disease		(B) Unfriendliness		
(C) Unwelcome rela	tives	(D) Impure blood		
Q2. Which 'figure o	of speech' is used	d in the following sentence:		
'Opportunity k	nocks at the doo	r but once.'		
(A) Hyperbole		(B) Metaphor	(B) Metaphor	
(C) Personification		(D) Simile		
Q3. Choose the cor	rect word to fill	in the blank.		
Our soldiers lai	d	_ to the town of the enemy.		
(A) cease	(B) seize	(C) siege	(D) sieve	
Q4. Match the follo	owing:			
~ .				

Column A	Column B
(i) To go bananas	A. Someone very old
(ii) Down to earth	B. Sensible and realistic
(iii) Old as the hills	C. To go crazy
(iv) A plum job	D. Something very easy

$$(A)(i) - C, (ii) - B, (iii) - A, (iv) - D$$

$$(C) (i) - C, (ii) - D, (iii) - A, (iv) - B$$

$$(D) (i) - A, (ii) - B, (iii) - C, (iv) - D$$

Q5. Find the error part :				
Unfortunately, many of the customers (A) / whom we invited for the event(B) /				
showed interest in our products (C) / No error(D) /				
Q6. The following sen	tence has been	n rewritten. Find out the most suita	ble option.	
It is possible that s	It is possible that she will arrive late.			
(A) She must arrive late	3.	(B) She should arrive late.		
(C) She may arrive late	(C) She may arrive late. (D) She could arrive late.			
Q7. Change the follow	ing sentence i	into Indirect Speech:		
Suryank said, "Fa	ther, I want to	o go abroad after I finish my studies	s here."	
(A) Suryank told his fat	ther that he war	nted to go abroad after he finished his	s studies there.	
(B) Suryank said his fat	ther that he war	nted to go abroad after he finished his	s studied there.	
(C) Suryank told his fat	ther that he war	nted to gone abroad after he finished l	his studies there.	
(D) Suryank told his fat	ther that he war	nted to go abroad after he finished his	s studies here.	
Q8. Give one word for	the given exp	pression:		
One who cannot b	e corrected.			
(A) Incurable	(B) Pa	anacea (C) Incorrigible	(D) Hardened	
Q9. Change the follow	ing sentence i	into Passive voice :		
They will look afte	er you well.			
(A) You will be looked	(A) You will be looked after well by them.			
(B) You will looked after well by them.				
(C) You will be well look after by them.				
(D) You will be look well after by them.				
Q10. Choose the correct word to fill in the blank:				
As you sow, so	yo	ou reap.		
(A) will	(B) would	(C) should	(D) shall	
		IATHEMATICS (20)		
Q. 11 The largest positive integer that will divide 100, 245 and 343 leaving remainders				
4, 5 and 7 respectively is:				
(A) 49	(B) 58	(C) 48	(D) 50	

Q12. If one of the zero	oes of the quadratic poly	$nomial f(x) = 14x^2 -$	$42k^2x - 9$ is
negative of the oth	er, then value of 'k' is:		
(A) 0	(B) 2	(C) 3	(D) 1
Q13. For what value of	of $m{k}$, will the following sy	stem of equations have i	infinitely many
solutions?			
2x + 3y = 4			
(k+2)x+6y	=3k+2		
(A) 3	(B) 4	(C) 2	(D) 1
Q14. A two-digit num	ber, when multiplied by	3, equals the square of t	he sum of its
digits. If three times t	he sum of the digits is eq	ual to the number itself,	then the number
is:			
(A) 27	(B) 28	(C) 30	(D) 26
Q15. If the roots of th	the equation $x^2 - bx + b$	c = 0 are two consecuti	ive integers, then
$b^2 - 4c$ equals:			
(A)-2	(B) 3	(C) 2	(D) 1
Q16. The equation x	$-\frac{2}{x-1}=1-\frac{2}{x-1}$ has:		
(A) no root		(B) one root	
(C) two equals roots	quals roots (D) infinitely many roots		ts
Q17. Let a_1, a_2, a_n	be the terms of an AP.	If $\frac{a_1 + a_2 + + a_p}{a_1 + a_2 + + a_q} = \frac{p^2}{q^2}$, $p \neq$	q, then
a_6/a_{21} equals:			
$(A)\frac{41}{11}$	$(B)\frac{7}{2}$	(C) $\frac{2}{7}$	(D) $\frac{11}{41}$
Q18. The sum of integ	gers from 1 to 100 that a	re divisible by 2 or 5 is_	
(A) 3050	(B) 5030	(C) 2950	(D) 5029
Q19. A triangle with	vertices (4, 0), (-1, -1),	and (3,5) is:	
(A) isosceles and right a	angled.	(B) isosceles but not rig	ht angled.
(C) right angled but not	isosceles.	(D) neither right angled	nor isosceles.
Q20. If $P(1,2)$, $Q(4,6)$	(6), $R(5,7)$ and $S(a,b)$ are	e the vertices of a parall	elogram <i>PQRS</i> ,
then			
(A) $a = 2, b = 4$		(B) $a = 3, b = 4$	
(C) $a = 2, b = 3$		(D) $a = 1, b = -1$	

Q21. If the sum of m t	erms of an AP is the san	ne as the sum of its <i>n</i> ten	rms, then the sum
of its $(m + n)$ term	ns is:		
(A) 0	(B) 1	(C) 2	(D) 3
Q22. If the points $A(4)$	(3) and $B(x,5)$ are on the	ne circle with centre O (2, 3) then
value of x is:			
(A) 1	(B) 3	(C) 2	(D) 4
Q23. The ratio in which	ch the line segment joini	ng the points $(-3, 10)$ a	and $(6, -8)$ is
divided by $(-1, 6)$	is:		
(A) 2 : 7	(B) 7:2	(C) 3:7	(D) $7:3$
Q24. If $\sin \theta = \cos \theta$, then value of 2 tan θ +	$-\cos^2\theta$ is:	
(A) 2/5	(B) 5/2	(C) 5/6	(D) 5/5
Q25. Two cubes each	of volume 64 cm³ are join	ned end-to-end. The sur	face area of the
resulting cuboid is:			
(A) 160 cm^2	(B) 161 cm^2	(C) 162 cm^2	(D) 163 cm^2
Q26. A solid is in the s	hape of a cone standing	on a hemisphere with b	oth their radii
being equal to 1 cm	and the height of the co	ne is equal to its radius	. Then the volume
- C 41 1' -1 '			
of the solid is:			
(A) π cm ³	(B) πcm ²	(C) πcm	(D) None of these
(A) π cm ³	(B) πcm ²	` '	,
(A) π cm ³	rvations was found to be	` '	,
(A) πcm ³ Q27. Mean of 25 obser	rvations was found to be	` '	,
(A) πcm ³ Q27. Mean of 25 observations misread 69. The co (A) 79.48	rvations was found to be rrect mean is:	78.4. But later on it wa (C) 79.49	s found that 96 (D) 79.47
(A) πcm ³ Q27. Mean of 25 observations misread 69. The co (A) 79.48	rvations was found to be rrect mean is: (B) 48.79	78.4. But later on it wa (C) 79.49	s found that 96 (D) 79.47
(A) πcm ³ Q27. Mean of 25 observations of all the Q28. The sum of all the	rvations was found to be rrect mean is: (B) 48.79	78.4. But later on it wa (C) 79.49	s found that 96 (D) 79.47
(A) πcm³ Q27. Mean of 25 obsermisread 69. The co (A) 79.48 Q28. The sum of all the remainder 3 is:	rvations was found to be rrect mean is: (B) 48.79 e three digit natural num (B) 70822	78.4. But later on it wa (C) 79.49 abers which on division	s found that 96 (D) 79.47 by 7 leaves
(A) πcm³ Q27. Mean of 25 observations of all the remainder 3 is: (A) 79.48 Q28. The sum of all the remainder 3 is:	rvations was found to be rrect mean is: (B) 48.79 e three digit natural num (B) 70822	78.4. But later on it wa (C) 79.49 abers which on division	s found that 96 (D) 79.47 by 7 leaves
(A) πcm ³ Q27. Mean of 25 observable	rvations was found to be rrect mean is: (B) 48.79 three digit natural num (B) 70822 10° — sin 10° is: (B) Negative	78.4. But later on it wa (C) 79.49 abers which on division (C) 71821	s found that 96 (D) 79.47 by 7 leaves (D) None of these
(A) πcm³ Q27. Mean of 25 obsermisread 69. The co (A) 79.48 Q28. The sum of all the remainder 3 is: (A) 70821 Q29. The value of cos (A) Positive	rvations was found to be rrect mean is: (B) 48.79 three digit natural num (B) 70822 10° — sin 10° is: (B) Negative	78.4. But later on it wa (C) 79.49 abers which on division (C) 71821	s found that 96 (D) 79.47 by 7 leaves (D) None of these

SOCIAL SCIENCE (10)

Q31. Which among the following events	forced Mahatma Gandhi to decide to withdray
the Non-cooperation Movement?	
(A) Jallianwala Bagh Massacre	(B) Rowlatt Act
(C) Chauri Chaura Incident	(D) None of the above
Q32. Who became the emperor of Germa	any after the unification of Germany?
(A) Victor Emmanuel II	(B) King Kaiser William I
(C) Count Cavour	(D) Giuseppe Garibaldi
Q33. Uranium and Thorium are available	e in which of the following regions used for
generating atomic and nuclear energy	·
(A) Jharkhand and Aravali range	(B) Nagarcoil and Madurai
(C) Puga valley and Parvati Valley	(D) Gulf of Khambhat
Q34. Which is the largest jute exporting	country in the world?
(A) India (B) China	(C) Bangladesh (D) Indonesia
Q35. NTPC stands for –	
(A) National Thermal Power Corporation	
(B) Non Technical Power Corporation	
(C) Non Thermal Power Company	
(D) Non Technical Power Consumption	
Q36. UNCED stands for –	
(A) United Nations Conference on Electronic	ics and Development
(B) United Nations Conference on Environm	nent and Development
(C) United Nations Council of Environment	and Development
(D) United Nations Council of Electronics a	nd Development
Q37. How many days of employment doe	es NREGA guarantee in a year in India?
(A) 30 days (B) 60 days	(C) 100 days (D) 150 days
Q38is an asset that the borro	wer owns and uses this as a guarantee to a
lender until the loan is repaid.	
(A) Terms of credit	(B) SHG
(C) Collateral	(D) Double coincidence of wants

	-		otes in an election to theis recognised as a state
(A) two seats		(B) three seats	
(C) one seat		(D) four seats	
Q40. In which year	Sri Lanka emerged	as an independent c	ountry?
(A) 1947	(B) 1948	(C) 1949	(D) 1950
	<u>SCIEN</u>	NCE (20 MARKS)	
	<u>P</u>	PHYSICS (7)	
_		1cm × 100cm. If species resistance between to (B) 3×10^{-7} ohm	ecific resistance of its the square faces is:
$(C)3 \times 10^{-5} ohm$		(D) $3 \times 10^{-3} ohm$	
Q42. The electric b and other 100W (A) 100W bulb has th	, then	ilaments of same len	gth. If one of them gives 60V
(B) 60W bulb has thi	cker filament		
(C) Both filaments ar	e of same thickness		
(D) It is possible to g	et different wattage u	inless the lengths are o	lifferent
Q43. Two coils are depends upon: (A) The rates at which			nductance of the pair of coils
(B) Relative position	and orientation of the	e two coils	
(C) The materials of the wires of the coils			
(D) The currents in the	ne two coils		
Q44. A cylindrical rotated about its (A) A current will be	s axis, then	along the axis of a cir	cular coil. If the magnet is
(B) No current will b	e induced in a coil		
(C) Only an EMF wi	ll be induced in the co	oil	
(D) An EMF and a cu	urrent both will be inc	duced in the coil	
Q45. To obtain a m	agnification of + 2 v	vith a concave mirro	r of radius of curvature 60
cm, the object d	istance must be:		
(A) - 90 cm	(B)-45 cm	(C) - 30 cm	(D) - 15 cm

Q46. The ratio of the r	refractive index of	red light to blue light in air i	s:
(A) Less than unity			
(B) Equal to unity			
(C) Greater than unity			
(D) Less as well as great	ter than unity depen	nding upon the experimental ar	rangement
Q47. If a copper rod c	arries a direct cur	rent, the magnetic field assoc	iated with the
current will be:			
(A) Only inside the rod		(B) Only outside the ro	od
(C) Both inside and outs	side the rod	(D) Neither inside nor	outside the rod
	<u>CHE</u>	EMISTRY (7)	
Q48. Which of the foll	owing is correct at	bout Plaster of Paris?	
(i) Plaster of Paris has	the formula CaSO	04.H ₂ O	
(ii) It is obtained by he	ating Gypsum at 1	00 K	
(iii) CaSO ₄ is called dea	ad burnt Plaster		
(iv) The ratio of water	molecules in Plasto	er of Paris to Gypsum is 1: 4	
(A) (i) and (ii)	(i) and (ii) (B) (ii) and (iii)		
(C) (iii) and ((iv)		(D) (i) and (iv)	
Q49. Which of the follo	owing metals does	not react even with hot water	r or steam?
(A) Copper	(B) Iron	(C) Magnesium	(D) Zinc
Q50. Saponification m	eans:		
(A) Acid hydrolysis		(B) Alkaline hydrolysi	S
(C) Esterification		(D) Dehydration	
Q51. A hydrocarbon h	as 6 hydrogen ato	ms. Give its molecular formu	ıla if it is an alkyne.
$(A) C_2H_6$	(B) C_3H_6	(C) CH ₄	(D) C_4H_6
Q52. Which of the foll	owing metals has t	the lowest melting point?	
(A) Copper	(B) Iron	(C) Francium	(D) Gallium
Q53. What happens w	hen dil. H ₂ SO ₄ is a	ndded to baking soda?	
(A) SO ₂ gas is evolved		(B) Sodium Sulphate is	s formed
(C) Washing soda is form	med	(D) All of the above	

Q54. $pFeS_2 + q O_2 \rightarrow x Fe_2O_3 + y SO_2$

The above reaction balances when

- (A) p = 4, q = 11, x = 2, y = 8
- (B) p = 11, q = 4, x = 8, y = 2
- (C) p = 2, q = 4, x = 8, y = 2
- (D) p = 4, q = 11, x = 8, y = 2

BIOLOGY (6)

Q55. Which of the following pairs is not correctly matched:

(A)	Vitamin B ₁₂	Pernicious Anaemia
(B)	Vitamin B ₆	Dermatitis and Anaemia
(C)	Vitamin B ₁	Beri-Beri
(D)	Vitamin B ₂	Pellagra

Q56. The Remains of Second Cotyledon occur in some grasses. It is called

- (A) Scutellum
- (B) Hypocotyl
- (C) Epicotyl
- (D) Epiblast

Q57. A cross between F₁ hybrid and its Homozygous recessive parent is

called_____.

(A) Out cross

(B) Test cross

(C) Monohybrid cross

(D) Dihybrid cross

Q58. Brush border surface is the distinct features of which of the following part of Nephron?

(A) PCT

(B) Ascending limb of loop of Henle

(C) DCT

(D) Collecting Duct

Q59. Which of the following is mismatched:

(A)	LUB	First heart sound associated with closure of tricuspid and bicuspid valves.
(B)	Cardiac Output	Stroke volume multiplied by Heart Rate
(C)	DUB	Second Heart Sound due to opening of Semilunar Valves
(D)	Duration of Cardiac Cycle	0.8 Seconds

Q60. Which part of the brain controls breathing?

(A) Cerebrum

(B) Cerebellum

(C) Hypothalamus

(D) Medulla Oblongata